Journée scientifiques GDR Prométhée

« Layered double hydroxide- assisted calcium tungstate (scheelite) dissolution »

Chimie Paris

IR | Institut de Recherche de Chimie Paris anr Farah AJAMI

Supervisor : Grégory LEFEVRE

23 - 05 - 2024

Context

• Tungsten criticity (UE 2023)

- ✓ Highest melting point (3.422 °C)
- ✓ High hardness & corrosion resistance
- ✓ Wide range of applications : aerospace, automotive, metallurgy, military, lighting..

Tungsten sources :

- Mine industry
- Recycling of W-containing waste
- Valorization of mine tailings

Main tungsten ore minerals : wolframite (Fe,MnWO₄) & **scheelite** (CaWO₄)

>2/3 tungsten reserves are in the form of scheelite (China : half of the world's tungsten reserves (51.4 %))

Common processes for dissolution of scheelite -Acid leaching HCl, H₂SO₄, HNO₃ -Alkali leaching NaOH/Na₂CO₃ → High temperature & pressure required

Thesis objective : Optimize dissolution and extraction of W from scheelite for a low-environmental-impact process.

Context

• Approach :

Solubility of different scheelites

- **ENA** 2+NA 3+10
 - [M_{1-x}²⁺M_x³⁺(OH⁻)₂]^{x+}(Aⁿ⁻)_{x/n} mH₂O

Advantages

- High anion-exchange capacity
- Intercalation of different anions
- Ease of synthesis & non-toxicity
- Used for environmental remediation

Limitations

- Solubility in acidic pH
- Reconstruction only feasible when precursor is calcined within a T° range of 300–500 °C
- Ratio M²⁺/M³⁺ should be within 2:1 to 4:1

Solubilization of scheelite pH=5 CaWO₄ + LDH-CO₃ \rightarrow Ca²⁺ + LDH-W₇O₂₄⁶⁻ +HCO₃⁻

Layered double hydroxide (LDH)

Recovery of W pH=10 LDH-W₇O₂₄⁶⁻ + Na₂CO₃ \rightarrow LDH-CO₃ + WO₄²⁻

 \Rightarrow Similar solubility for COM and natural CaWO₄ in the pH range from 4,5 to 6

pH 5 : solubility around 10^{-5} M for an initial scheelite concentration of 8.10^{-3} M

Different scheelites account for different solubilities

LDH- MgAlCO₃

Characterization of LDH prepared by co-precipitation

W extraction via LDH

• Protocol

Effect of pH, reaction time & intercalated anion

In presence of LDH, Sch solubility multiplied by a factor of 100

 \Rightarrow pH 5 : optimal for a better W extraction & good LDH stability

 \Rightarrow Slow dissolution reaching a plateau after 48 hours

LDH in-situ

Extraction time	%W recovered	%Mg dissolved
1 h	11	25
3 h	31	<mark>39</mark>
24 h	33	<mark>43</mark>

LDH in-situ more réactive

In situ infra-red

- Principle of in-situ attenuated total reflexion infrared spectroscopy
- ✓ Allows little or no sample preparation which greatly speeds sample analysis
- Allows very thin sampling pathlength and depth of penetration of IR beam into the sample

The incident beam enters the crystal and undergoes total internal reflection when angle of incidence at the interface (sample/crystal) is greater than the critical angle (the refractive index of the crystal must be greater than that of sample n1>n2).

The evanescent wave penetrates into the sample producing a spectrum of the sample.

$$d_p = \frac{\lambda}{2\pi n_1 \sqrt{\sin^2\theta - (\frac{n_1}{n_2})^2}}$$

The depth penetration (d_p) is a function of the wavelength, the refractive index of the crystal & the sample, the angle of incident radation Θ .

In situ infra-red

• Aim : follow the carbonates/polytungstates exchange for LDH_Sch system

In situ infra-red

- \checkmark Demonstration of scheelite dissolution in the presence of LDH
- ✓ Optimum dissolution pH 5 W recovery at pH 11 (25%)
- ✓ In-situ monitoring of exchange between carbonates and polytungstates using infrared ATR
- \mapsto Use of mine tailings samples and tungsten concentrates (in progress) :
 - Effect of gangue minerals on LDH efficiency and contact with scheelite (pH stabilization despite expected low dissolution of gangue minerals / pH regulation)

Thank you for your attention