

Lithium selective recovery with Electrochemical Ion Pumping for Li-ion batteries recycling

Corentin Bourdiol

<u>Thesis director</u>: Sylvain Franger (Univ. Paris Saclay - ICMMO) <u>Supervisors</u>: Emmanuel Billy (CEA - LITEN) Adrien Boulineau (CEA - LITEN) Charly Lemoine (CEA - LITEN)

<u>Liten</u> State of the art: battery recycling process

liten Cea State of the art: Li extraction process

Main methods of lithium recovery

23/05/2024

<u>Liten</u> State of the art: ELIP process

Material choice for ELIP process

Study of LFP as the insertion material

6

Electrode production:

Coating synthesis method

Active material : *LiFePO*₄ + *e*⁻ conductor : *C Super P* + Binder : *PVDF* + Solvant : *NMP*

Selected substrate : carbon cloth

3-Electrodes set up:

<u>3 electrodes setup</u>

Microscopic characterization:

MEB and HRTEM images of LFP powder

MEB image : cross-section of LFP onto CC electrode

Study of capacity

These electrodes are sufficient for conducting more in-depth studies

Zeng, Electrochim. Acta, vol. 177, pp. 277–282, 2015 Yin, Chin. J. Chem. Phys., vol. 28, no. 3, pp. 315–322, 2015 Yesibolati, Electrochim. Acta, vol. 152, pp. 505–511, 2014

Study of selectivity

Normalized E-I curves of delithied LFP in different electrolyte

C-rate C/2	Capacity mAh/g	lon radius Å
<i>LiNO</i> ₃ 0.5 <i>M</i>	150 ± 5	0.9
<i>NaNO</i> ₃ 0.5 <i>M</i>	110 ± 10	1.16
<i>KNO</i> ₃ 0.5 <i>M</i>	7 ± 3	1.52

Capacity of delithied LFP in different electrolyte (mAh/g)

	C-rate	Li selectivity
Li vs Na	3C	98.3 % ±1
	С	$98.7 \% \pm 0.5$
	C/10	99.5 % ±0.1
Li vs K	C/2	~100

<u>Selectivity (percentage of Li inserted) of the electrode during</u> <u>cycling at different C-rate in equimolar electrolyte</u>

Good selectivity with K and Na, can be optimized

R. D. Shannon, Acta Cryst, vol. 32, p. 751, 1976

23/05/2024

Manufacturing protocols for coin cells

<u>Coin cells characterisation</u> : Good reproducibility of coin cells

☑ Equivalent capacities with both setup

Coin cell setup can be used to study our LFP electrodes

Study of stability

Electrode stability as a function of cycling at Crate C

Nyquist graph evolution of a PB during 1C cycling

Good stability of the electrodes in aqueous electrolyte

Objective : understanting degradation mechanisms

93% after 100 cycles at 1C : <u>Tron, doi: 10.1021/acsami.6b16675</u>

~80% after 200 cycles at 1C : <u>Zeng, doi: 10.1016/j.electacta.2014.12.088</u>

23/05/2024

Cea liten Coin cell cycling

Study of stability

 \rightarrow Change cycling parameters to accelerate/understand degradations

Objective : coupling PEIS – DRX – HRTEM – Electrochemistry to understand degradation mechanisms

Liten Conclusions and perspectives

- Synthesis of high-performance electrodes in aqueous environments
 - capacity
 - selectivity
 - stability
- ☑ Development of coin cell for aqueous electrolyte

Ongoing studies :

 \rightarrow Understand degradation mechanisms

Coupling electrochemical characterisation with HRTEM, EELS, DRX, PEIS

 \rightarrow Electrode performance (in complex electrolytes)

Thanks

23/05/2024