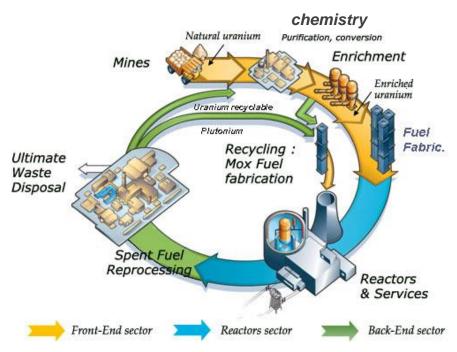


LTSM – Laboratoire tri ionique par les systèmes moléculaires auto-assemblés

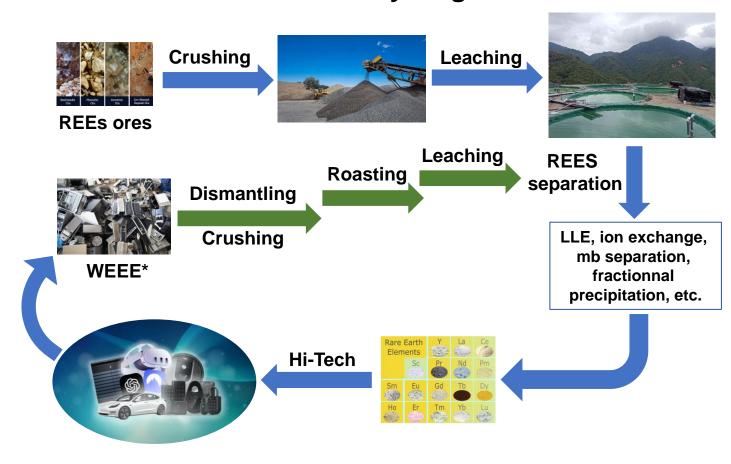
Lipophilic Derivatives of AminoPolyCarboxylic Acids as **New Extractants for the Fuel Cycle** and the Recycling of Non-**Radioactive Rare Earth Elements: Context and Examples.**

E. Fauvel, S. Sukhbaatar, R. Piton, T. Zemb, G. Arrachart, F. Giusti & S. Pellet-Rostaing.

ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Marcoule, France

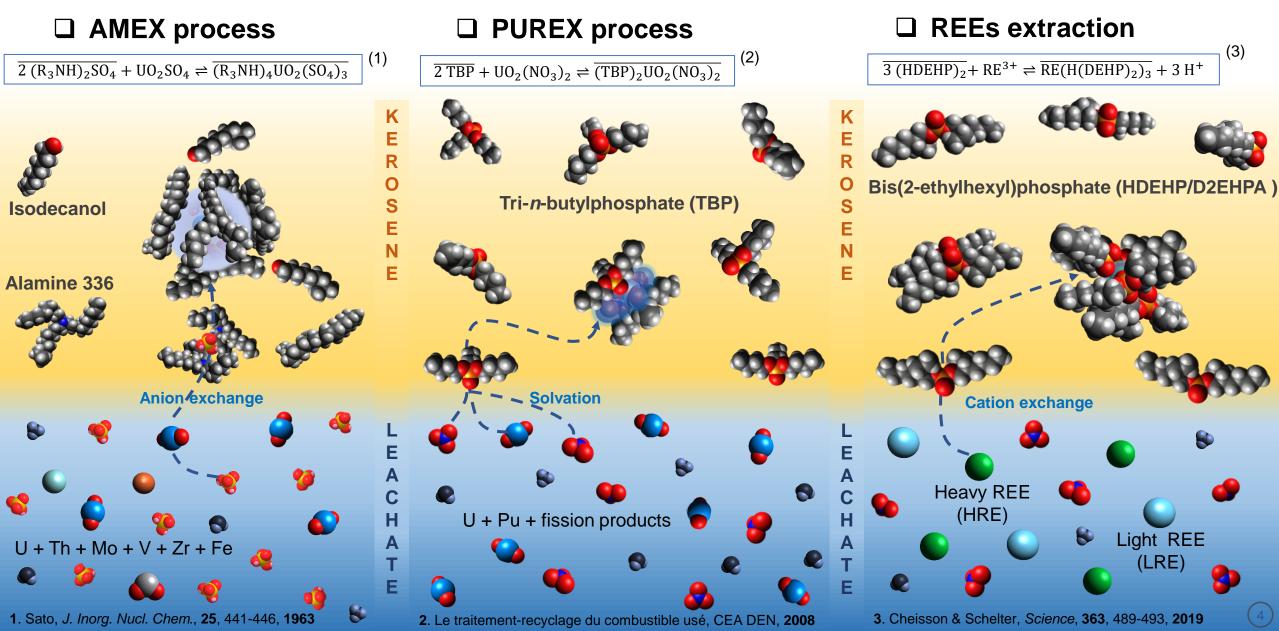

CONTEXT:
Liquid-Liquid
Extraction (LLE) &
Hydrometallurgy of
Actinides &
Lanthanides

Mining & Recycling of Lanthanides & Actinides


☐ Uranium: the fuel cycle

https://laradioactivite-prod-en.apps.wok3.in2p3.fr/articles/nuclearenergy/fuel_cycle

- LLE processes involved
 - > Front-end
 - ✓ AMEX in sulfuric media
 - ✓ URPHOS in phosphoric media
 - Back-end
 - ✓ PUREX in nitric media


REEs: extraction and recycling

- LLE processes involved
 - Similar processes are applied in both cases
 - > From nitric, hydrochloric or sulfuric media

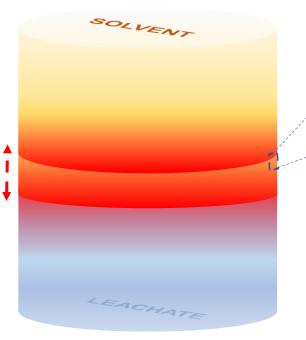
LEE for selective separation of actinides and lanthanides

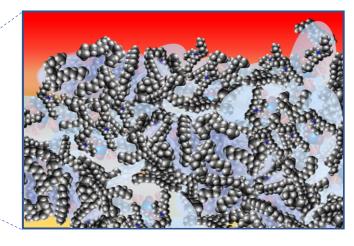
Limitations of LLE Processes Applied at Large Scale

☐ Selectivity of transfer can be improved

- U vs Fe, V, Mo, Zr (AMEX)⁽⁴⁾
- U vs Fe (URPHOS)⁽⁵⁾
- Ln(III) vs. An(III) (back-end fuel cycle)⁽⁶⁾
- HRE vs LRE⁽³⁾
- Intra-lanthanide separation (highly challenging)^(3,7)

☐ Third phase formation


- Splitting of the organic phase
- AMEX⁽⁸⁾
- REE extraction⁽⁹⁾

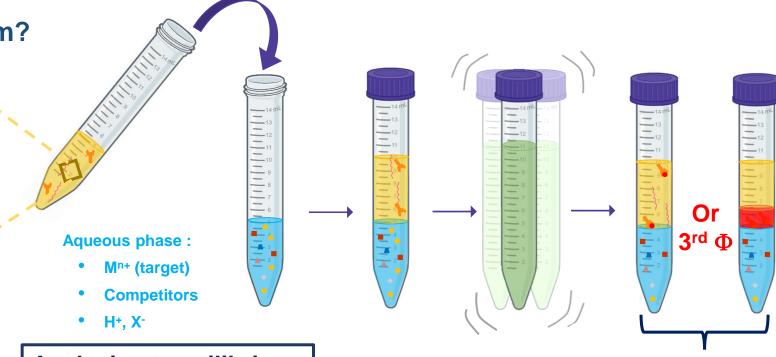

= Cumbersome phenomenon that jeopardizes the ELL process

Heavy phase = huge aggregation of ligand and polar material

Limitations of LLE Processes Applied at Large Scale

- ☐ Selectivity of transfer can be improved
- ☐ Third phase formation
- Organophosphorous extractants
 - "Former" concern
 - Incineration of solvents leads to phosphates accumulation

To be replaced by extractants consisting of C, H, O, N


Understand and Optimize Processes at the Lab. Scale

□ Role of constituents? Mechanism?

Solvent:

- Extractant: reference or new one
- Diluent: *n*-dodecane
- Phase modifier (PM): 1-octanol

• SAXS/SANS => Colloid properties $\Phi_{\rm org}$? • Shape • $N_{\rm ag}$ • Size • PM penetration • Diluent penetration

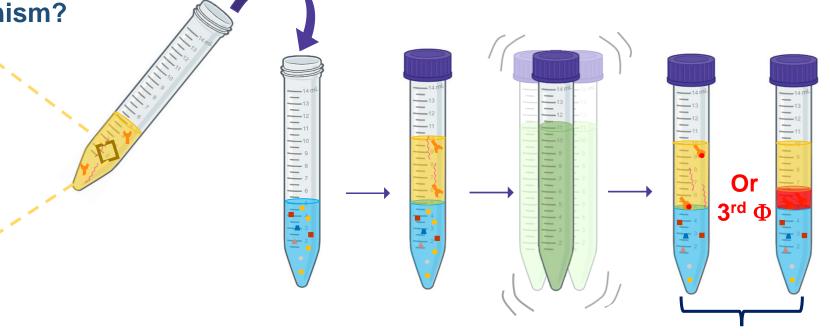
Analysis at equilibrium

- pH-metry/KF => Composition H+/H₂O Φ_{Org} ?
- log *D* = *f*(log [ligand]) => Stœchiometry M:L?
- In $K_{ex} = f(1/T) \Rightarrow \Delta H^{\circ}$, ΔG° , ΔS°
- Tensiometry => Surface properties + CAC

ICP => Distribution of M Φ_{Org}/Φ_{aq} ?

$$D_{\rm M} = \frac{[\rm M]_{\rm org}}{[\rm M]_{\rm aq}} \cdot \frac{V_{\rm org}}{V_{\rm aq}} \quad \Rightarrow \quad \text{Efficiency}$$

$$SF_{M_1/M_2} = \frac{D_{M_1}}{D_{M_2}}$$
 \Rightarrow Selectivity


Understand and Optimize Processes at the Lab. Scale

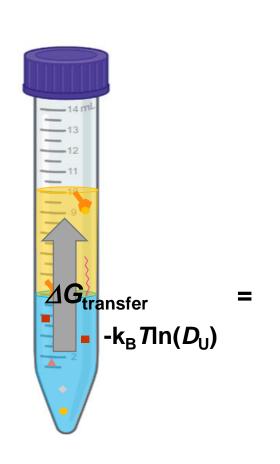
☐ Role of constituents? Mechanism?

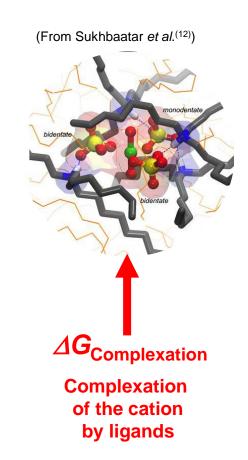
Solvent:

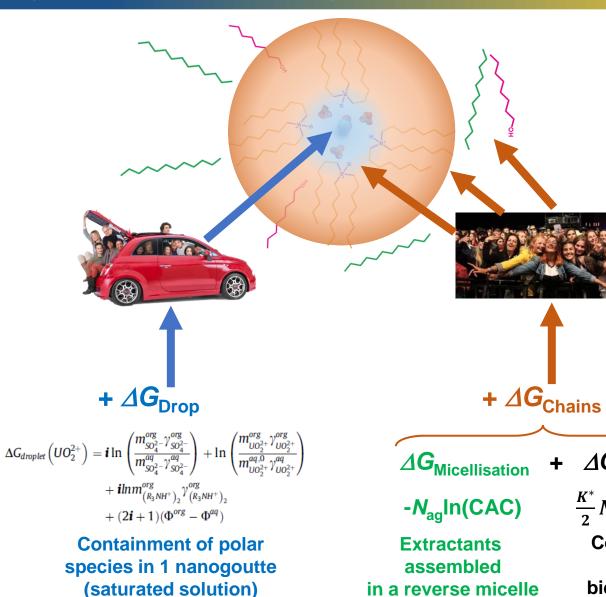
- Extractant: tailoring the structure
- Diluent: tuning the chains length or
- PM: tuning the structure

RATIONALIZATION:

equations + subtle analysis of the thermodynamic of the system


⇒ lenaic: extraction = f(colloid properties of solvent)





Ienaic Approach: Thermodynamic & Theory(10,11)

in a reverse micelle

+ **△G**_{Curvature}

 $\frac{K^*}{2}N_{\rm Ag}(P_{\rm S}-P_{\rm e})^2$

Core/Corona

Interface

biding energy

=> Film stiffness

EXAMPLE:
Development of
Lipophilic
AminoPolyCarboxylic
Acid Derivatives

What Are AminoPolyCarboxylic Acids (APCAs)?

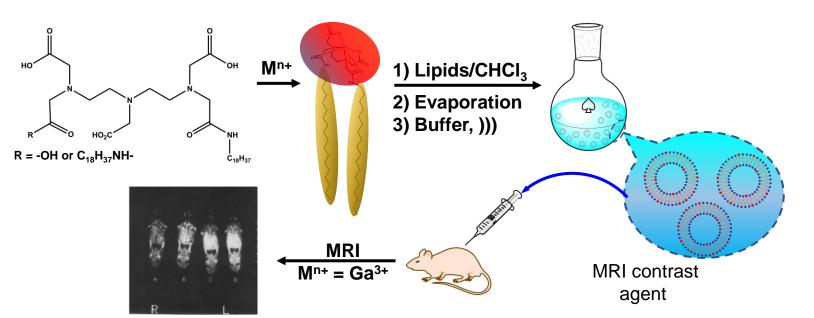
2,2',2"',2"'-(ethane-1,2-diylbis(azanetriyl))tetraacetic acid EthyleneDiamineTetracetic Acid (EDTA)

2,2',2"',2"'-(((1*R*,2*R*)-cyclohexane-1,2-diyl)bis(azanetriyl))tetraacetic acid trans-1,2-CyclohexaneDiamineTetraacetic Acid (CyDTA)

2,2',2"',2"'-((((carboxymethyl)azanediyl)bis(ethane-2,1-diyl))bis(azanetriyl))tetraacetic acid

DiethyleneTriaminePentaacetic Acid (DTPA)

2,2',2"',2"'-(1,2-phenylenebis(azanetriyl))tetraacetic acid 1,2-PhenylDiamineTetraacetic Acid (PDTA)


1970 1980 1990 2000 2010 2020 2024

Development of **hydrophobic** EDTA/DTPA derivatives as surfactants or MRI contrast agents⁽¹³⁾

Development of hydrophobic EDTA/DTPA diamide derivatives

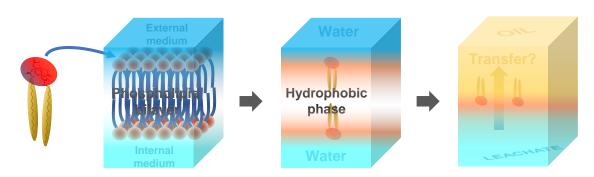
Development of hydrophobic *C*-alkylated EDTA/DTPA derivatives

Development of **lipophilic** EDTA/DTPA derivatives for LLE of metal cations

- Technical note ICSM in 2014⁽¹⁴⁾
- Claimed but not achieved in a Japanese patent in 2015⁽¹⁵⁾
- Patented in France (ICSM)⁽¹⁶⁾
- Published by LTSM & co⁽¹⁷⁾
- ANR (NEODREAM)
- E. Fauvel's Ph. D. (2024-2027)

1970 1980 1990 2000 2010 2020 2024

Development of **hydrophobic** EDTA/DTPA derivatives as surfactants or MRI contrast agents⁽¹³⁾


Development of hydrophobic EDTA/DTPA diamide derivatives

Development of hydrophobic *C*-alkylated EDTA/DTPA derivatives

Development of **lipophilic** EDTA/DTPA derivatives for LLE of metal cations

- Ligand-REE complex is typically more lipophilic than the free ligand
- Transfer of REE in solvent should be favored

APCAを開発しましょう

REEs LLE用の親油性

- Technical note ICSM in 2014⁽¹⁴⁾
- Claimed but not achieved in a Japanese patent in 2015⁽¹⁵⁾
- Patented in France (ICSM)⁽¹⁶⁾
- Published by LTSM & co⁽¹⁷⁾
- ANR (NEODREAM)
- E. Fauvel's Ph. D. (2024-2027)

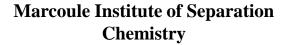
☐ High affinity⁽¹⁵⁻¹⁷⁾ of parent molecules towards lanthanides and actinides

■
$$LH_4 + M^{n+} \stackrel{K}{\rightleftharpoons} [LH_{4-n}M] + nH^+$$
 with $K \sim 10^{15} - 10^{30}$

- But poor intra-Ln selectivity⁽³⁾
 - > Tuning affinity/selectivity by chemical modification
 - ✓ Modification of carboxylic acid function => affinity lowered by 1000⁽¹⁸⁾
 - ✓ Modification of the hydrocarbon backbone increases affinity by 10-100⁽¹⁹⁾

□ Potential CHON cation exchanger

- Strong first acidity maintained after modification⁽²⁰⁾
 - > Advantageous replacement of organophosphorus extractants


- ☐ Potential applications in the fuel cycle
 - Front-end process: extraction of U from sulfuric or phosphoric leachates (E. Fauvel's Ph. D.)
 - Back-end process: reversal of the SANEX
 - Hydroxylated EDTA analogous (HEDTA) used in the SANEX process of the fuel cycle
 - > Amphiphilic derivatives as bypass for actinides recovering in organic medium
- □ Recycling of REEs from WEEEs via LLE (CEFIPRA project 2017-2021)

Terra Nova Development

- ☐ Hydrophobic modification of APCAs must yield lipophilic derivatives
 - Solubility ≥ 0.2 M in *n*-dodecane

☐ Modification may be performed by mono- or diamidation^(13,21)

(16)

- ☐ Hydrophobic modification of APCAs must yield lipophilic derivatives
 - Solubility > 0.2 M in *n*-dodecane
- ☐ Modification may be performed by mono- or diamidation^(13,21)
- ☐ Modification may be performed on hydrocarbon backbone(18,22-24)

☐ Modification may be performed on hydrocarbon backbone^(18,22-24)

Example: synthesis of symetrical di-C-alkylated EDTA derivatives⁽²³⁾

Synthesis of Lipophilic APCAs Derivatives

☐ Synthesis of APCAs diamide derivatives

- Yield = 60-90%
- Only modification performed with dialkylamines led to derivatives soluble in conventionnal organic solvents
 - \rightarrow HNR₂ with R = C₈H₁₇-, 2-Ethylhexyl, C₁₀H₂₁-, C₁₂H₂₅-
- Only one EDTA derivative was found slightly soluble in n-dodecane:octanol mixture
 - ➤ EDTA derivative with R = decyl soluble at 0.015 M in 93:7 n-dodecane:octanol (DOm)
- All CyDTA and PDTA derivatives were found soluble at 0.2 M in pure dodecane
 - But all compounds were too unstable
 - Partial degradation within one week in diluent

Modification cannot be performed on both carboxylic functions and hydrocarbon backbone

☐ Synthesis of C-alkylated EDTA derivatives

- $R = C_{10}H_{21}$ or $C_{12}H_{25}$ -
- 30% overall yield
- Partially soluble in methanol

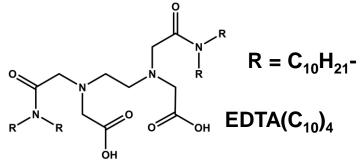
Proof of concept adressed with CyDTA derivatives and EDTA diamide(C₁₀)₄

- ☐ Example: extraction of Nd(III) with ligand diluted in various diluents(16,17)
 - $D_{\rm M}$ vs pH => cation exchange properties
 - From HCl or HNO₃ leachate ([Nd³⁺] = 0.01 M)
 - $[EDTA(C_{10})_4] = 0.01 M$ in various diluents
 - DOm = 93:7 n-dodecane:octanol mixture
 - ➤ DiPB = 1,3-diisopropylbenzene
 - ➤ Heptan-2-one
 - MiBK = methylisobutyketone
 - 11-Undecen-1-ol
 - Chloroform => Solubility~100 mM

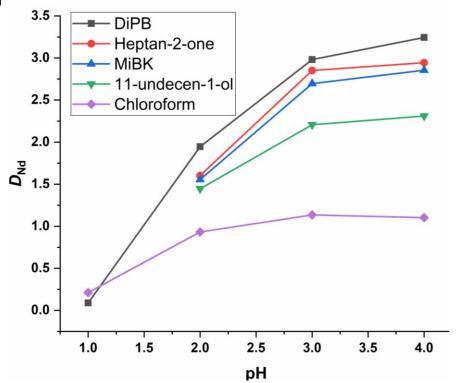
$$R = C_{10}H_{21}$$

$$R = C_{10}H_{21}$$

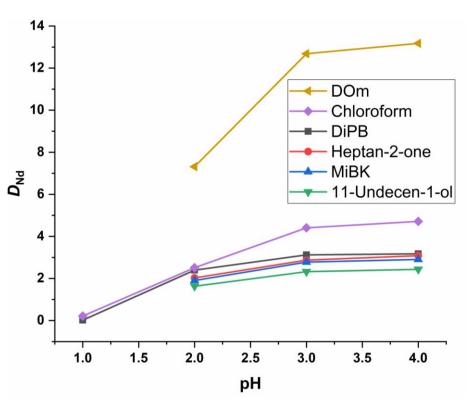
$$R = C_{10}H_{21}$$

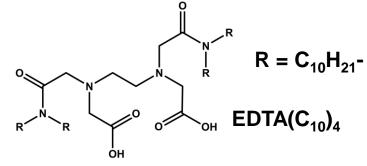

$$R = C_{10}H_{21}$$

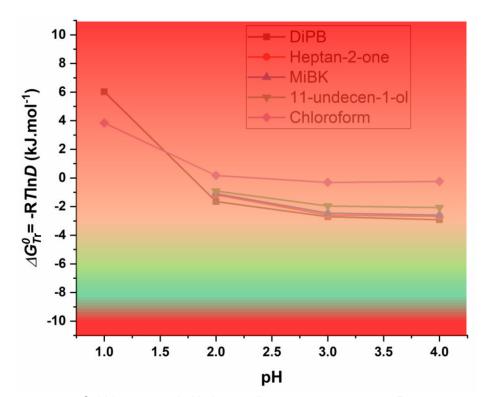
Solubility~20 mM



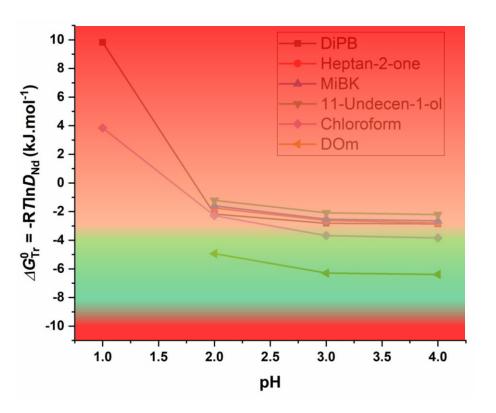
☐ Example: extraction of Nd(III) with ligand diluted in various diluents(16,17)


- D_{M} vs pH => cation exchange properties
- From HCl or HNO₃ leachate ([Nd³⁺] = 0.01 M)
- $[EDTA(C_{10})_4] = 0.01 \text{ M}$ in various diluents

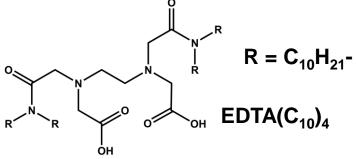


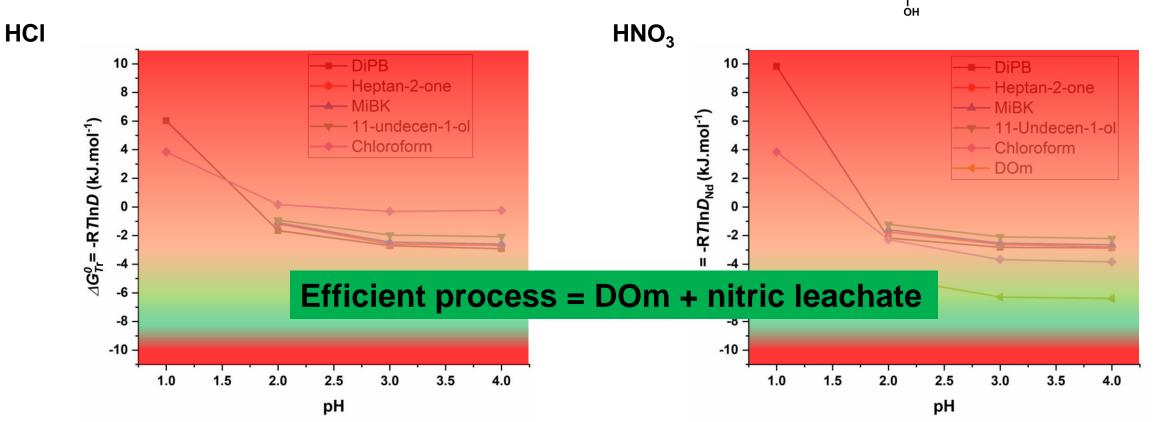


☐ Example: extraction of Nd(III) with ligand diluted in various diluents(16,17)


- $\triangle G_{tr} = -RT \ln D_M \text{ vs pH} => \text{ cation exchange properties}$
- From HCl or HNO₃ leachate ([Nd³⁺] = 0.01 M)
- $[EDTA(C_{10})_4] = 0.01 \text{ M}$ in various diluents

HCI

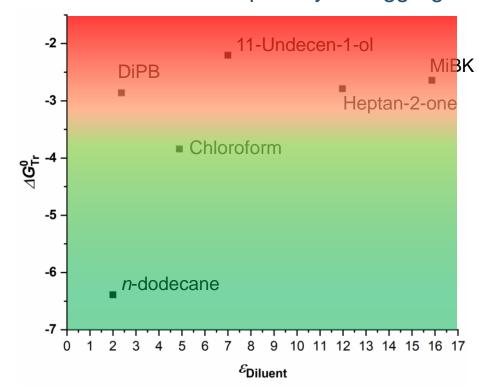

HNO₃

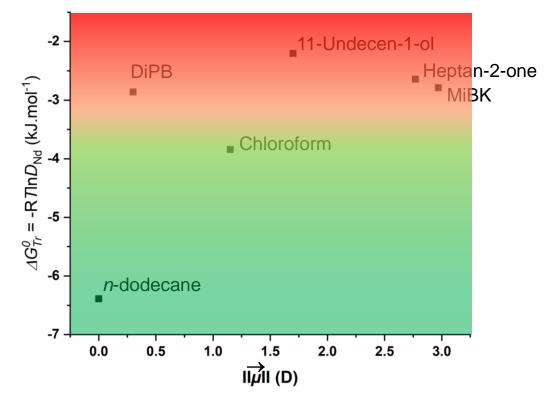


☐ Example: extraction of Nd(III) with ligand diluted in various diluents(16,17)

- $\triangle G_{tr} = -RT \ln D_M$ vs pH => cation exchange properties
- From HCl or HNO₃ leachate ([Nd³⁺] = 0.01 M)
- $[EDTA(C_{10})_4] = 0.01 \text{ M}$ in various diluents

☐ Example: extraction of Nd(III) with ligand diluted in various diluents(16,17)

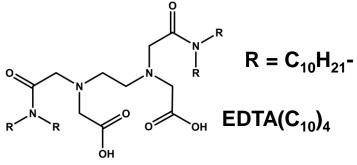

- $\triangle G_{Tr}$ vs polarity of the diluent
- From HNO_3 leachate ($[Nd^{3+}] = 0.01 M$) at pH = 4
- $[EDTA(C_{10})_4] = 0.01 \text{ M}$ in various diluents

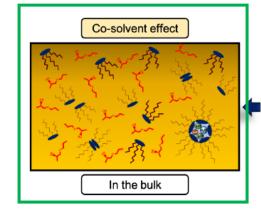

$$R = C_{10}H_{21}$$

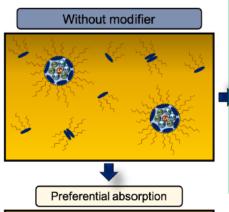
OH

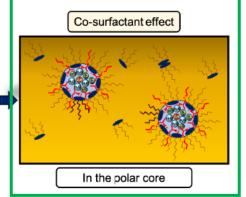
EDTA(C_{10})₄

=> Low polarity => Aggregation ↑ => extraction ↑ ↑

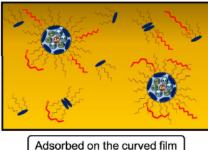



□ Example: extraction of Nd(III) with ligand diluted in various diluents^(16,17)


- ΔG_{Tr} vs polarity of the diluent
- From HNO_3 leachate ([Nd³⁺] = 0.01 M) at pH = 4
- $[EDTA(C_{10})_4] = 0.01 M in various diluents$



=> Role of the phase modifier (PM)


PM increases the solubility in *n*-dodecane

PM increases the stability of aggregates in *n*-dodecane

(From El Maangar et al.²⁵)

$$Nd^{3+}_{(aq)} + \alpha A^{-}_{(aq)} + n H_2EDTA(C_{10})_4 \stackrel{R_{eq}}{\rightleftharpoons} \overline{NdA_a(H_xEDTA(C_{10})_4)_n} + (3 - \alpha) H^{+}_{(aq)}$$

- \triangleright LogD vs [EDTA(C₁₀)₄] => n = 1 in CHCl₃
- $\rightarrow \overline{HLNdA_2}$ is predominant

- $K_{\text{eq}} = \frac{D_{\text{Nd}} \cdot \alpha_{\text{Nd}^{3+}} \cdot \gamma_{\text{H}^{+}}^{3} \cdot [\text{H}^{+}]_{\text{eq}}^{3}}{\gamma_{\text{Nd}^{3+}} \cdot [\text{H}_{2}EDTA(C_{10})_{4}]_{eq}^{n}} \cdot (\gamma_{\text{H}^{+}} \cdot \gamma_{\text{A}^{-}})^{-a} \cdot [\text{H}^{+}]_{\text{eq}}^{-a} \cdot [A^{-}]_{\text{eq}}^{-a}$
- > Extraction is entropy-driven in DiPB (aromatic) and enthalpy-driven in DOm (aliphatic)
- $\rightarrow \Delta G^{\circ} = -R \pi n K_{eq} \sim -24 \text{ kJ.mol}^{-1} \text{ is not affected by media}$

CONCLUSION & OUTLOOK

☐ Promising and interesting properties that must be improved

- Solubility in n-dodecane must be adjusted to that expected (0.2 M)
- Selectivity intra-Ln must be improved

■ Molecular tailoring

- Development of new lipophilic APCAs derivatives = first phase of E. Fauvel's Ph. D.
 - Enhanced lipophilicity provided by branched alkyl chains
 - Systemic study with various topologies tuned at same carbon number

R	R'	Topology
- <i>n</i> -C ₁₀ H ₂₁	- <i>n</i> -C ₁₀ H ₂₁	Symetrical linear
C_8H_{17}	- <i>n</i> -Pr	Disymmetrical branched
ورسط Bu C ₈ H ₁₇	- <i>n</i> -Hex	Disymmetrical branched
Neodecyl	Neodecyl	Symetrical branched
2-Ethyloctyl	2-Ethyloctyl	Symetrical branched

-C₄₀H₈₄

Acknowledgements

LTSM:

Ienaic experts:

T. Zemb

J.-F. Dufrêche

Partners & fundings:

The PROMÉTHÉE GDR

Administrations:

