

LTSM – Laboratoire tri ionique par les systèmes moléculaires auto-assemblés

Impact de la position et du degré de ramification sur l'extraction de l'uranium par les amines tertiaires. Une étude supramoléculaire et thermodynamique.

E. Guerinoni¹, Z. Lu¹, <u>F. Giusti¹</u>, S. Dourdain¹, J.-F. Dufrêche¹, R. Motokawa², Y. Ueda², N. Aoyagi³, T. Zemb¹ and S. Pellet-Rostaing¹

ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Marcoule, France
Materials Sciences Research Center, Japan Atomic Energy Agency, Ibaraki 319-1195, Japan
Advanced Science Research Center, Japan Atomic Energy Agency, Ibaraki 319-1195, Japan

ENS

3. Shmidt, V. S. Amine Extraction; Moskova, 1970

Production minière d'uranium et procédé AMEX

□ Le procédé AMEX

- Lixiviat = acide sulfurique + oxydes et cations métalliques (U, Th, Mo, V, Zr, Fe)
- Diluant = kérosène + modifieur de phase (MP) = isodécanol
- Extractant = mélange ($C_8 + C_{10}$) amines III (Alamine 336) voire ammoniums IV (Aliquat 336)

Limitations du procédé AMEX

Limitations du procédé AMEX

Dégradation de l'extractant^(5,6)

- Catalysée par V^V + participation du MP
- 50 % alamine dégradés en 250 j
- ➢ Mélange amines II/III => sélectivité ↓↓

□ Formation de la troisième phase⁽⁷⁾

- Criticité (en aval du cycle)
- ➢ Efficacité et sélectivité ↓↓
- ➤ Viscosité ↑ ↑

Comprendre pour optimiser à l'échelle du laboratoire

Comprendre pour optimiser à l'échelle du laboratoire

Thèse Elise Guèrinoni (2020-2023)

L'approche thermodynamique iénaïque – théorie^(8,9)

11. Lu et al., J. Mol. Liq., 349, 118409, 2022.

Exemple : Propriétés d'extraction des amines ramifiées

Contexte

=> *I*_{alkvie} ↓, [H⁺]_{Org}↑ et [H₂O]_{Org} ↑

 $D_{II} = f$ (topologie) => Encombrement azote $\uparrow D_{II} \downarrow \downarrow$

Conditions :

[Amine] = 0,05-0,4 M

(9)

Sur la base de ce qui a été observé lors de travaux antérieurs⁽¹¹⁾ :

Exemple : Propriétés d'extraction des amines ramifiées

Contexte

Sur la base de ce qui a été observé lors de travaux antérieurs^(11,12) :

Exemple : Propriétés d'extraction des amines ramifiées

Contexte:

- Structure branchée = stabilité Φ à faible teneur en MP
- Structure branchée = prévention de la dégradation de l'extractant ?

Comprendre pour optimiser => disposer d'un extractant ramifié avec D_U et $FS_{U/Mn+}$ >> 1

- > Multiplier les structures => synthèse isomères C_8 ramifiés en position intermédiaire
 - Synthèse de la 4-éthylhexylamine et de la 5-méthylheptylamine (racémique)

Synthèse des trialkylamines

Modulation nombre de ramification/trialkylamine

Effet position/nombre de ramifications⁽¹³⁾

(12)

Trialkylamines utilisées

□ Impact sur les propriétés d'extraction

Structure de la phase organique

Qualitativement :

- Signaux caractéristiques d'un objet sphérique
- Plus la ramification est proche de N, plus l'intensité diffusée baisse

Baisse $I(q) = \downarrow R_{ag}$ ou $\downarrow V_{ag}$? \Rightarrow Interprétation nécessite un ajustement des données

Structure de la phase organique

 $I(q) = \frac{N}{V_{\text{sond}\acute{e}}} \rho^2 V_{\text{obj}}^2 P(q) S(q)$

<u>Facteur de forme :</u> Sphère cœur-coquille

Facteur de structure :

Sphères dures ou sphères dures collantes de Baxter (attractive)

(b) Aggregate radius R and (Å)

0A 3.9						
					Me-6-3	-
	Me-5-1		Me-5-2	2	Me-5-3	1
	E+ / 1	3.6	E+ 4 2	3.8	E+ 4 2	3.6
	CL-4-1	4.4	El-4-2	3.9	EL-4-3	3.4
	Et-2-1		Et-2-2		Et-2-3	1
		2.3		1	<u> </u>	1
DA 5.5						
5.5					Me-6-3	
	Me-5-1	L	Me-5-2	2	Me-5-3	
		4.8		4.9		4.6
	Et-4-1		Et-4-2		Et-4-3	
		- 0				
	Ft-2-1	5.0	Ft-2-2	4.5	Ft-2-3	4.5
	Et-2-1	5.0 3.4	Et-2-2	4.5 1.9	Et-2-3	4.5 1.4
04	Et-2-1 (e) Dilu	5.0 3.4	Et-2-2 penetra	4.5 1.9 tion	Et-2-3 x	4.5 1.4
OA 1.3	Et-2-1 (e) Dilu	5.0 3.4	Et-2-2 penetra	4.5 1.9 tion	Et-2-3	4.5 1.4
OA 1.3	Et-2-1 (e) Dilu	5.0 3.4	Et-2-2 penetra	4.5 1.9 tion	Et-2-3 <i>x</i> Me-6-3	4.5
OA 1.3	Et-2-1 (e) Dilu Me-5-1	5.0 3.4	Et-2-2 penetra Me-5-2	4.5 1.9 tion	Et-2-3 <i>x</i> Me-6-3 Me-5-3	4.5
OA 1.3	Et-2-1 (e) Dilu Me-5-1	5.0 3.4 uent	Et-2-2 penetra Me-5-2	4.5 1.9 tion 2 0.9	Et-2-3 <i>x</i> Me-6-3 Me-5-3	4.5 1.4
OA 1.3	Et-2-1 (e) Dilu Me-5-1 Et-4-1	5.0 3.4 uent 1.2	Et-2-2 penetra Me-5-2 Et-4-2	4.5 1.9 tion	Et-2-3 x Me-6-3 Me-5-3 Et-4-3	4.5

TOA			
10.44			
			Me-6-3
			-
	Me-5-1	Me-5-2	Me-5-3
	10.1	10.0	9;4
	Et-4-1	Et-4-2	Et-4-3
	9.3	9.9	9.5
	Et-2-1	Et-2-2	Et-2-3
(8.8 d) Shell thick	6.1 kness∆t _{shell}	6.0 (Å)
(TOA 5.6	8.8 d) Shell thick	6.1 kness∆t _{shell}	6.0 (Å)
(TOA 5.6	8.8 d) Shell thick	6.1 kness∆t _{shell}	6.0 (Å) Me-6-3
(TOA 5.6	8.8 d) Shell thick Me-5-1	6.1 kness ∆t _{shell} Me-5-2	6.0 (Å) Me-6-3 - Me-5-3
(TOA 5.6	8.8 d) Shell thick Me-5-1 5.3	6.1 kness <i>Δ t</i> shell Me-5-2 5.1	6.0 (Å) Me-6-3 - Me-5-3 4.9
(TOA 5.6	8.8 d) Shell thick Me-5-1 5.3 Et-4-1	6.1 kness <i>Δ t</i> shell Me-5-2 5.1 Et-4-2	6.0 (Å) Me-6-3 - Me-5-3 4.9 Et-4-3
(TOA 5.6	8.8 d) Shell thick Me-5-1 5.3 Et-4-1 4.2	6.1 xness <i>Δ t</i> _{shell} Me-5-2 5.1 Et-4-2 5.4	6.0 (Å) Me-6-3 - Me-5-3 4.9 Et-4-3 5.0
(TOA 5.6	8.8 d) Shell thick Me-5-1 5.3 Et-4-1 4.2 Et-2-1	6.1 cness <i>Δ t</i> shell Me-5-2 5.1 Et-4-2 5.4 Et-2-2	6.0 (Å) Me-6-3 - Me-5-3 4.9 Et-4-3 5.0 Et-2-3

(f) Stickyness parameter τ⁻¹ (k_BT) TOA 5.9 Me-5-1 Me-5-2 Me-5-3 1.3 1.1 H.S Et-4-1 Et-4-2 Et-4-3 13.3 H.S H.S Et-2-1 Et-2-2 Et-2-3 H.S H.S H.S

Nb de ramification et proximité à N \uparrow

 \Rightarrow R_{ag} et $N_{\mathrm{ag}}\downarrow$

 \Rightarrow Pénétration diluant et interaction attractive \downarrow

 \Rightarrow Objets plus petits et moins enclins à la 3^{ème} phase

(14)

Approche thermodynamique iénaïque

- $\Delta G_{\text{complexation}} \ll 0$ (typiquement exergonique)
 - $\Delta G_{\text{complexation}} << \Delta G_{\text{transfert}} < 0$ (« faiblement » exergonique)
 - Freins endergoniques au transfert :

 $-\Delta G_{\text{micellisation}} =$ frein majoritaire (diminution d'entropie du système induite par l'agrégation)

- ΔG_{aoutte} : varie peu avec la topologie

- $\Delta G_{\text{courbure}}$: varie le plus avec la topologie (pénétration du diluant et rigidité du film d'extractant)

Conclusion et perspectives

(16)

1 ou 2 chaînes ramifiées loin de l'azote

- Amélioration du facteur de séparation
- Agrégation favorisée
- Formation de 3^{ème} phase

Ramification éthyle loin de l'azote

- $\Delta G_{\text{courbure}}$ augmente, agrégat plus rigide
- Interactions attractives diminuent
- Moins de 3^{ème} phase
- Extraction efficace

Ramification proche de l'azote

- $\Delta G_{\text{courbure}}$ trop élevée, agrégation impossible
- Pas d'extraction
- \Rightarrow Ajuster [MP] pour optimiser R_{ag} et FS
- \Rightarrow Synthèse et caractérisation propriétés Et-3 et Me-4
- \Rightarrow Synthèse/caractérisation hybrides C₈ Et-n/Me-m

Remerciements

Le LTSM :

Experts iénaïque :

T. Zemb (LTSM) J.-F. Dufrêche Le JAEA :

R. Motokawa Y. Ueda N. Aoyagi,

Le GDR PROMÉTHÉE

Les tutelles :

Chimie Montpellier

(17)