

MODÉLISATION GÉOCHIMIQUE : QUELS APPORTS POUR LES PROCÉDÉS ?

Arnault Lassin, Laurent André 24 mai 2024

Plan

Généralités

3 exemples d'application

- Extraction directe de Li à partir d'eaux géothermales
 - Echange ionique, diffusion, porosité duale
- Dynamique de précipitation de la calcite
 - Cinétiques réactionnelles, *complexation de surface*
- Réactivité chimique d'une eau géothermale dans le puits de production
 - Complexité chimique, équilibres liquide-gaz-solide, effets T-P

Conclusions

Généralités

Modélisation géochimique

- Description des interactions eau-gaz-roche
- Environnements variés
 - Naturels or anthropisés
 - Lithosphère
- Conditions T, P, x, S variées
 - , T, P
 - Chimie, salinité
- Objectifs : comprendre/prévoir
 - Equilibres (géo)chimiques
 - Evolution des systèmes hors équilibre
 - o ...

• Problématiques partagées avec le monde des procédés

3

Généralités

Approche de type γ-φ

Chaque composé chimique est décrit par son potentiel (électro-)chimique

Contexte

- Deux types de gisement de Li
 - Sous forme solide (différents minéraux porteurs en fonction du processus géologique de genèse)
 - Sous forme aqueuse (salars, lacs salés, eaux géothermales)
- Exploitation des gisements solides : la plus avancée, mais procédés lourds, avec de forts enjeux environnementaux
- Exploitation des gisements aqueux : nombreux développements en cours
 - Extraction directe du lithium (DLE technology) Séparation L/L ou L/S

Procédé Eramet (L/S) utilisé dans le cadre du projet européen EuGeLi pour les saumures géothermales du fossé Rhénan

Mécanisme d'extraction

- Solide activé = Li-bayérite
 - Minéral en feuillets
 - Cavités dans lesquelles seul Li⁺ peut entrer : extraction sélective
 - Cl⁻ dans l'interfoliaire pour maintenir l'électroneutralité
- Réaction chimique associée : échange réversible de paires ioniques

Britto and Kamath (2009)

Structure cristalline de la bayérite lithiée

Utilisation du formalisme adapté aux mécanismes d'échange cationique (argiles) ou anionique (HDL)

 \equiv Bay + H₂O \leftrightarrows \equiv Bay-H₂O

 $z \equiv Bay-H_2O + M^{z+} + z CI^- \Leftrightarrow \equiv Bay_z-MCI_z + z H_2O$

Modèle

BRGM

- Réaction de référence (énergie nulle) :
- Adsorption sélective de paires ioniques :
 - $M^{z+} = Li^+$, Na⁺, Ca²⁺, Mg²⁺
 - Une constante d'équilibre (K) par réaction
- Deux types de sites : « sorption » forte ou faible :
 - Prise en compte d'un degré d'irréversibilité
 - Représentation d'une dynamique d'échange
- Modèle d'activité des espèces aqueuses :
 - Pitzer (salinités supérieures à l'eau de mer)
- Activité des sites d'échange :
 - Fraction molaire de la capacité d'échange du solide (Gaines-Thomas)
- Code de calcul : PhreeqC (Parkhurst et Appelo, 2013)

Cellule unitaire de la bayérite lithiée

oscience for a sustainable Farth

Résultats

- Expériences en batch (Eramet ID)
 - LiCl- H_2O ,
 - LiCI-NaCI-H₂O,
 - LiCI-NaCI-CaCl₂-H₂O, LiCI-NaCI-MgCl₂-H₂O
- Expériences en colonne (Eramet ID)
 - Injection d'une solution LiCl + NaCl
 - T : 20, 40, 60, 80°C
 - Modèle à double perméabilité
 - zone mobile : advection + diffusion
 - > zones stagnantes : diffusion

250

200

(1/8 m) / [1] 100

200

• exp.

800

600

Vcumul (mL)

– modèle

1000

Contexte

Carbonates

- Ubiquistes dans la partie supérieure de la lithosphère
- Grande réactivité chimique
- Jouent un rôle prépondérant dans le cadre du changement climatique
- Notamment : stockage géologique du CO₂
- Stockage en aquifère salin
 - Perturbation d'origine anthropique (échelle industrielle)
 - Milieu non accessible (profondeur > 800 m)
 - Recours à la modélisation = nécessaire
- Projet ANR CGSµLab

Objectif

- · Description du mécanisme de nucléation/croissance de la calcite
- Expériences
 - Co-injection de solutions Na₂CO₃ et CaCl₂ dans un micro-canal
 - Formation de calcite après 1 h
 - Injection de CaCl₂ dans Na_2CO_3 (Gebauer et al., 2008)
 - > Formation de CaCO₃ amorphe entre 1 et 2 h
- Concept : succession de mécanismes
 - 1- Nucléation homogène de CaCO₃ amorphe (CCA) et création de sites de complexation de surface
 - 2- Nucléation hétérogène de calcite à partir des sites de surface
 - 3- Croissance de la calcite et déstabilisation du CCA
 - 4- Dissolution complète du CCA
- Modèle géochimique : combinaison de lois cinétiques de précipitation/dissolution et de réactions de complexation de surface

Beuvier et al. (2015)

Modèle

- Complexation de surface
 - Description de la composition chimique de la surface du CCA
 - Résolution de l'équation de Poisson-Boltzmann
 - En fonction de la composition chimique de la solution « bulk »
- Cinétiques dissolution/précipitation
 - Formalisme de la théorie de l'état de transition (Lasaga et al., 1994)

 $\succ \quad r_m^{\pm} = \pm \sum_j k_{m,j} S_m \big| 1 - \Omega_m^{\theta} \big|^{\eta}$

m = minéral; j = mécanisme; k = « constante » cinétique; S = surface réactive; $\Omega = Q/K$: saturation; $\theta, \eta = \text{paramètres}; + = \text{dissolution}, - = \text{précipitation}$

- $k_{CCA}^{-}(C_{"libre"}), k_{CCA}^{+}(pH)$ $k_{Calcite}^{-}(\equiv_{CCA} CaOH_2^{0.5+}, \equiv_{Calcite} CaOH_2^{0.5+}), k_{Calcite}^{+}(\equiv_{Calcite} CaOH_2^{0.5+})$
- Code de calcul : PhreeqC (Parkhurst et Appelo, 2013)

Structure de l'interface calcite-solution

Résultats

• Conditions expérimentales de Gebauer et al. (2008)

Evolution de la concentration en Ca²⁺ représentative de la succession des mécanismes réactionnels

• Conditions expérimentales de Beuvier et al. (2015)

Présence éphémère de CCA et apparition rapide de la calcite (~10 min)

or a sustainable Earth

Pour aller un peu plus loin...

- Modélisation du transport réactif
- Code de calcul : Phast (Parkhurst et al., 2004)

Lassin et al. (2018)

Précipitation de la calcite préférentiellement localisée en début de canal

Exemple 3 : Réactivité chimique d'une eau géothermale dans le puits de production

Contexte

- Production de chaleur par géothermie de haute énergie
 - Ressource énergétique décarbonée 0
 - Peu d'empreinte au sol 0
 - Energie renouvelable 0
 - Co-production (ex. Li), ... 0
- Mais technologie complexe
 - Perturbation importante du fluide due à la variation de T et P
 - Risques d'encroûtements, de corrosion

. . .

Objectifs

- Reconstitution du fluide en fond de puits
- Simulation de remontée de fluide
- Localisation du point de bulle
- Estimation des risques d'encroûtement

Temperature [°C]

Exemple 3 : extraction d'une eau géothermale

Données

- En tête de puits
 - o T, P
 - Débits (eau, gaz), rapport L/G
- Eau
 - Composition chimique élémentaire + redox
 - Paramètres physicochimiques (pH, conductivité, ...)
- Gaz
 - Composition chimique de la phase vapeur
 - Composition chimique du condensat

He Phase liquide Be Phase gazeuse Na Mg A Si C Ar Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Kr Br Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te Rb Sr Xe Cs Ba 57-71. Hf Ta W Re Os Ir Pt Au Hg TI Pb Bi Po At Rn Fr Ra ***** Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Fl Uup Lv Ts Og

Complexité du système chimique

Exemple 3 : extraction d'une eau géothermale

Reconstitution de la composition du fluide en fond de puits : un prérequis pour simuler la remontée de fluide

Exemple 3 : extraction d'une eau géothermale

Remontée du fluide géothermal

- Outil : PhreeqC
- Modèle de transport 1D, flux-flux
- Chaque cellule est à l'équilibre avec une phase gazeuse (de volume variable)
- Réactivité chimique (équilibre et/ou cinétique)

Localisation du point de bulle

Estimation des risques d'encroûtement

Cinétiques de précipitation

BRGM — FRENCH NATIONAL GEOLOGICAL SURVEY — **WWW.BRGM.EU**

Conclusion

- La flexibilité intrinsèque de la modélisation géochimique en fait un outil intéressant pour aborder de nombreuses problématiques, de l'exploitation du sous-sol dans le cadre de son utilisation pour la transition énergétique jusqu'au domaine des procédés
- Parmi ses avantages :
 - complexité des systèmes chimiques
 - o variété des mécanismes réactionnels, traités de façon cohérente
 - Large gamme T, P extensible au-delà de 300°C
 - Possibilité d'inclure des cinétiques d'activité bactérienne
- Limitations :
 - Solutions uniquement aqueuses
 - Gestion compliquée de la matière organique
 - L'approche du point critique de l'eau reste un verrou
- Développements à réaliser/en cours :
 - Couplages avec la mécanique des fluides, le transport particulaire, les transferts de chaleur
 - Bases de données thermodynamiques/cinétiques

o ...

Merci pour votre attention

Classification simplifiée des principaux types de gisements de lithium mondiaux

