

GDR Groupement de recherche **Prométhée** Procédés hydrométallurgiques pour la gestion intégrée des ressources primaires et secondaires

Direct preparation of palladium catalysts by selective extraction of the E-waste leachates

> Dmytro Nikolaievskyi 23/05/2024 Journées du GDR Prométhée IFPEN, Rueil-Malmaison

anr®

Context

Demand by market sectors

Demand by industrial sectors

Global net demand ≈ 193,8 tonnes in 2023

Pd is widely used in catalytic processes

- H_2O_2 production 0
- Drug synthesis (pharma) Ο
- Polymer production Ο
- Air purification Ο
- Ο . . .

Pd – critical metal Secondary sources should

be considered

Context

Demand by market sectors

Demand by industrial sectors

Global net demand ≈ 193,8 tonnes in 2023

Electronic waste - a promising source for Pd

• High Pd content compared to natural ores

Pd is widely used in catalytic processes

- o H_2O_2 production
- o Drug synthesis (pharma)
- Polymer production
- Air purification
- o ...

Pd – critical metal Secondary sources should be considered

1 tonne of memory cards yields :

1 tonne of natural ore yields :

Hughes, A. et al., *Resources*, **2021**, *10*(9), 93. SFA (Oxford)

Hydrometallurgy for Pd recovery

Which processes are used to recover Pd?

Bourgeois, D. et al., Hydrometallurgy 191, 2020: 105241.

Hydrometallurgy for Pd recovery

Is it possible to by-pass the isolation of pure Pd salt?

Bourgeois, D. et al., *Hydrometallurgy* 191, **2020**: 105241. Lacanau, V. et al., *ChemSusChem*, **2020**, *13*, 5224-5230

Project concept

CAREME - CAtalysis with REcycled Metals

Valorize noble metals (mainly Pd, Au) from electronic waste by direct preparation of hetero- and homogeneous catalysts.

Project concept

CAREME - CAtalysis with REcycled Metals

Valorize noble metals (mainly Pd, Au) from electronic waste by direct preparation of hetero- and homogeneous catalysts.

MLCC – Pd source

Multilayer ceramic capacitors

SEM images of MLCC cross-section

Thesis M. M. Romo y Morales

Ва

Direct valorization of leachates

γ-Al₂O₃ supported catalysts prepared by deposition-precipitation method

Thesis M. M. Romo y Morales

Direct valorization of leachates

Catalytic test : Total oxidation of methane

Thesis M. M. Romo y Morales

pH impact on the catalytic performance

▲ 1.0%Pd/Al₂O₃

DP10.5/Al₂O₃ : 1.0%Pd-2.8%Ag-2.2%Ba-1.4%Bi-3.0%Ti-0.2%Pb/Al₂O₃ DP4/Al₂O₃ : 1.0%Pd-1.0%Ag-0.4%Ba-2.2%Bi-1.9%Ti-0.3%Pb/Al₂O₃

Direct valorization of leachates

(11)

Catalytic test : Total oxidation of methane

Thesis M. M. Romo y Morales

pH impact on the catalytic performance

Good activity compared to the model catalyst

...but works poorly in butadiene hydrogenation

▲ 1.0%Pd/Al₂O₃

DP10.5/Al₂O₃ : 1.0%Pd-2.8%Ag-2.2%Ba-1.4%Bi-3.0%Ti-0.2%Pb/Al₂O₃

DP4/Al₂O₃: 1.0%Pd-1.0%Ag-0.4%Ba-2.2%Bi-1.9%Ti-0.3%Pb/Al₂O₃

How to improve the performance?

Solvent = dodecane

(12)

How to improve the performance?

Which ligands to use ?

Liquid-liquid extraction

Commercial product

DOS 1000 €/kg 0,1 M/ dodecane, A/O = 1, 3h, 23 °C, 1000 rpm

✓ Total Pd extraction
 ✓ Total precipitation of Pd on Al₂O₃
 ➤ Contains S – catalytic poison
 ➤ Inefficient organic phase recycling

Synthesized easily at the laboratory

Hex = 3

0,2 M/ dodecane, A/O = 1, 3h, 23 °C, 1000 rpm

2.1 ea.

180°C. 12 h

+ Hex Hex

- \checkmark High distribution coeff. (D = 32)
- ✓ Sulphur free

1 eq.

- ✓ Efficient recycling
- × Lower efficiency of precipitation of Pd on AI_2O_3

Pd source solution: Leachate (E-waste) or Model solution (Pd 1,7 g/L)

Catalytic tests

Hydrogenation of butadiene $\begin{array}{c}
\hline H_2, Pd cat. \\
\hline T, P
\end{array}$ $\begin{array}{c}
\hline + & \swarrow \\
\hline + & \checkmark \\
\end{array}$

Experimental set-up

Hydrogenation of butadiene $4 = \frac{H_2, Pd \text{ cat.}}{T, P} + 4$

Butadiene maximal conversion, %

	Pd source	
Extracting agent	Pd model	E-waste
DOS	66,0	14,0
THEMA	29,2	<1

Selectivity in butenes, %

	Pd source	
Extracting agent	Pd model	E-waste
DOS	59,0	100,0
THEMA	99,5	100,0

Conclusions and Perspectives

Sum up :

- Catalyst directly prepared from leachate by DP demonstrated encouraging results in total oxidation of methane but very poor activity in hydrogenation of butadiene.
- Liquid-liquid extraction was chosen to selectively isolate Pd from leachate.
- DOS and THEMA were used as extracting agents.
- Performance of the catalysts prepared from model solution is higher than the one prepared from leachate.

Evaluate the rentability of each step basing on the cost, recyclability and extraction efficiency of the products used

Acknowledgments

Jean-Luc Rousset Franck Morfin Noura Haydar

LHyS (Systèmes HYbrides pour la Séparation)

Thank you for attention

(19)

Thank you for attention

20

First experiments

DOS extraction conditions:

- Leachate : MLCC, Pd 1710 ppm (ref. H678)
- DOS (0,1 M) solution in dodecane
- O/A = 1
- 3 h at 1000 rpm, 23°C

WI >>> No Pd in the org. phase after impregnation >>> Total deposition

DNc-00X-DOS-WI-MLCC (IRCE) DNc-00X-DOS-WI-MLCC(ACTIV)

Washing with H_2O :

- O/A = 5
- 0,5 h at 1000 rpm, 23°C
- 2 times

pH of aqueous phase after 2nd washing around 3-4

Heterogeneous catalysts

Synthesis of THEMA

THEMA extraction conditions:

- Leachate : MLCC, Pd 1710 ppm (ref. H678)
- THEMA (0,2 M) solution in dodecane (addition of 10% mol of DHA)
- O/A = 1
- 3 h at 1000 rpm, 23°C

WI

DNc-00X-THEMA-WI-MLCC (IRCE)

DNc-00X-THEMA-WI-MLCC (ACTIV)

Conclusions and Perspectives

Sum up :

- Catalyst directly prepared from leachate by DP demonstrated encouraging results in total oxidation of methane but very poor activity in hydrogenation of butadiene.
- Liquid-liquid extraction was chosen to selectively isolate Pd from leachate.
- Catalysts prepared using DOS showed better performance.
- Performance of the catalysts prepared from model solution is higher than the one prepared from leachate.

Perspectives :

- Back-extraction from organic phase to avoid the impurities.
- Preparation of Pd nanoparticles directly in organic phase.
- Evaluate the rentability of the use of DOS and THEMA as extracting agents based on cost, recyclability and extraction efficiency.

