

Gas-Liquid precipitation for the recovery of lithium from a Lithium-Ion Battery Leachate

Lorena Ramírez

Ludivine Franck-Lacaze, Hervé Muhr

Outline

- 1. Introduction
- 2. Precipitation using Na₂CO₃
- 3. Precipitation using CO₂ (Gas-Liquid precipitation)
- 4. Summary
- 5. Further work

1. Introduction

Lithium-ion battery waste and recycling needs

- Lithium-ion battery waste is growing by 20 per cent per year and could exceed 136,000 tones by 2036.
- 1,2 million of EOL EV batteries to recycle annually by 2030.
- Rising to 14 million per year by 2040.
- Challenges of improper disposal: environmental contamination, health risks, resource wastage, fire hazards, regulatory issues and economic impact.

McKinsey & Company (March 13,2023) Battery recycling takes the driver's seat https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/battery-recycling-takes-the-drivers-seat#
Mark Peplow (November 19,2023) Lithium-ion-battery-recycling-goes/101/i38

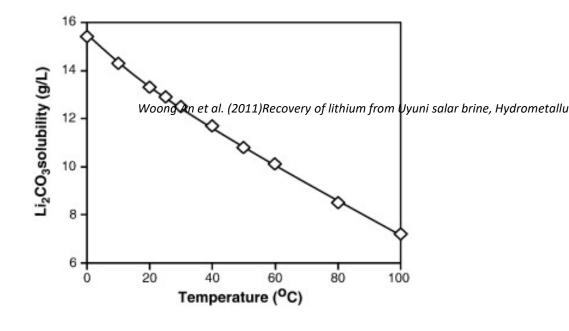
1. Introduction

Advantages and outlook of battery recycling

- Recycling lithium-ion batteries could reduce the new
- Recycled materials lowers the cell construction Co
- Battery recycling is a profitable and rapidly growing environmental responsibilities and shortage of raw
- EOL EV batteries are not expected to become a s 2040.

		NMC811	NCA	LFP	USD/kg
	Lithium	5 kg	6 kg	6 kg	14,59
ıe	Cobalt	5 kg	2 kg	0 kg	27,83
:(Nickel	39 kg	43 kg	0 kg	21,41
	Manganese	5 kg	0 kg	0 kg	
)	Graphite	45 kg	44 kg	66 kg	
W	Aluminium	30 kg	30 kg	44kg	
	Copper	20 kg	20 kg	26 kg	
si	Steel	2 kg	20 kg	26 kg	
	Iron	0	0 kg	41kg	

https://www.dailymetalprice.com/lithium.html

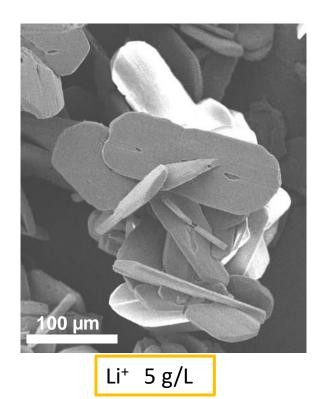


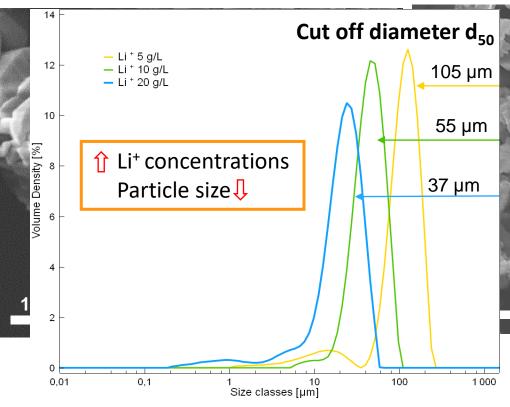
2. Precipitation using Na₂CO₃

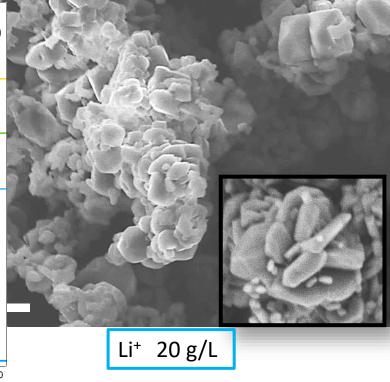
Objectives:

- 1. Obtain lithium carbonate using Na₂CO₃
- 2. Analyse the quality of the product focusing on the morphology, lithium recovery yield and purity levels.

Exp.	T [°C]	V _T [ml]	Agitation [rpm]	T [min]	рН	Li + [g/L]
1						5
2	80	500	500	60	10 ≈11	10
3						20

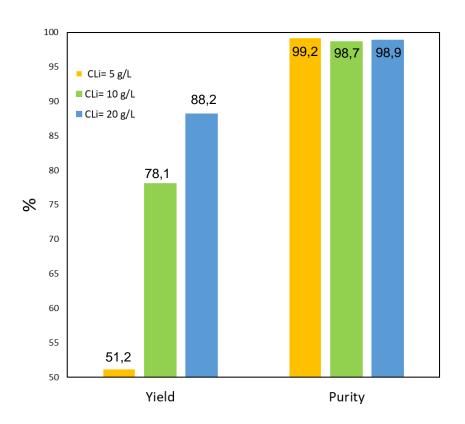


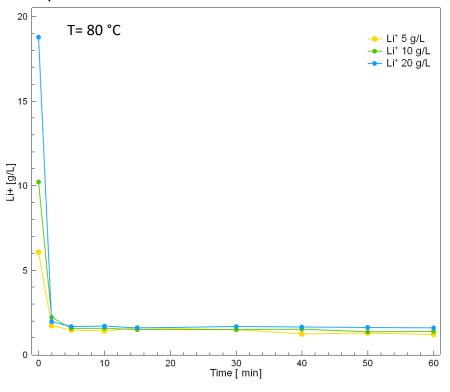




2. Precipitation using Na₂CO₃

Morphological characterization



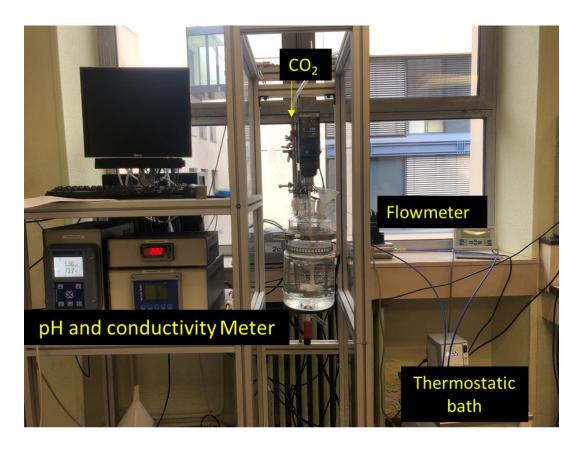


2. Precipitation using Na₂CO₃

Lithium recovery yield

Equilibrium curve/ lithium concentration over time

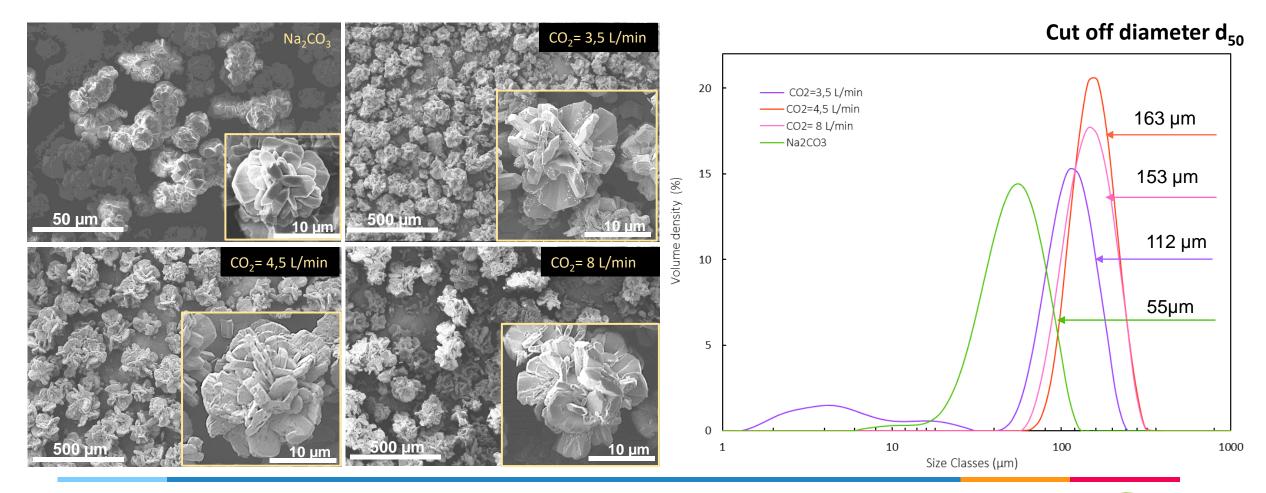
3. Precipitation using CO₂ (Gas-Liquid precipitation)


1. Obtain lithium carbonate throu

2. Analyse product quality in tern lithium recovery yield and puri

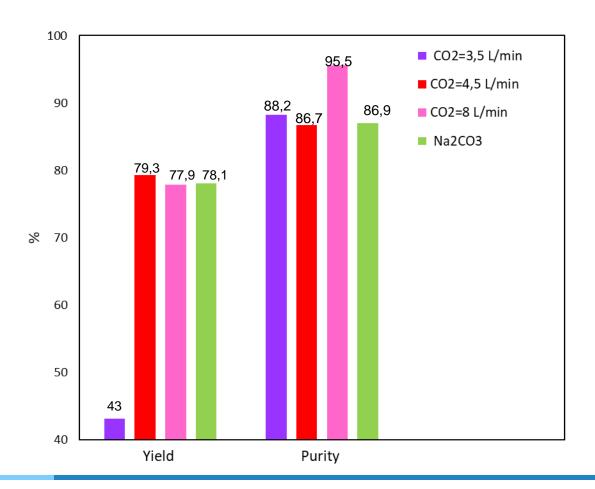
3. Compare results with the Na₂ method.

Ехр.	Li+ [g/L]	T [°C]	V _τ [ml]	Agitation [rpm]	
1					
2	10	80	2000	400	
3					



3. Precipitation using CO₂ (Gas-Liquid precipitation)

Morphological characterization

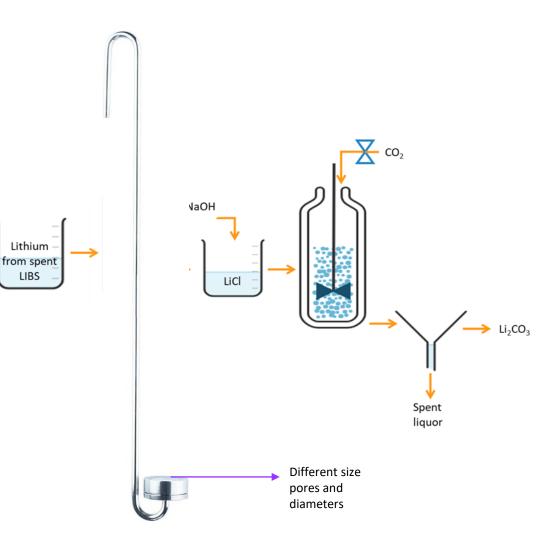


3. Precipitation using CO₂ (Gas-Liquid precipitation)

Lithium recovery yield and purity

4. Summary

	Li ₂ CO ₃ precipitation using CO ₂	Li ₂ CO ₃ precipitation using Na ₂ CO ₃ _	
Purity and recovery	Higher purity and recovery under optimal	Standard purity and recovery	
	conditions		
Crystals morphology	Larger spherulites	Smaller spherulites	
Reaction speed	Slower	Faster	
Operational conditions	Requires careful pH and temperature control	Less stringent control needed	
Material costs	Lower, utilizes CO ₂ , however it requires a	Higher, requires Na ₂ CO ₃	
	basic solution to increase pH.		
Safety and handling	Involves CO ₂ storage and handling risks	Easier to handle and store Na ₂ CO ₃	
Technology requirements	Specialized equipment to increase	Standard Set-Up	
	superficial area to improve reaction		
	efficiency		
Environmental impact	More sustainable, supports carbon neutrality	Less environmentally friendly	



5. Further work

- Continue testing techniques to increase the initial lithium concentration.
- Identify the optimal operational conditions, focusing on temperature and flow rate.
- Experiment with different CO₂ injectors to asses their impact on product quality.
- Additionally, investigate whether the injectors influence flow rate and pH control.

Lithium

LIBS

REACTIONS ET GENIE DES PROCEDES

CHEMICAL ENGINEERING LABORATORY

